SETILDS _ STREAMS _ CAN	Revision	0.48]
SLIUFS - STILAMS - VAN	Date	25/03/2025	

CAN streams overview

Control Area Network (CAN) is a widely used communication protocol for system integration. Most Cosworth devices support CAN communication and interfacing with both Cosworth and third-party CAN devices. The **Streams** node is used to configure CAN streams.

Create a CAN stream

Within a setup, click on the 'Streams' option on the left side or use the **Streams** node to access all the CAN streams. The hierarchy of a CAN steam is as follows: Stream, Packets, Bytes, and Bits. Channels can be multiple Bytes or Bits.

To create a new stream, hover over the + button (1) and select either CAN Decode or CAN Encode (2). Use the 'bin' tool to delete unwanted streams (3).

Streams	٦
	3 🔞
\bigcirc CAN Decode \bigcirc CAN Encode ²	

You can import (1) and export (2) streams either individually (3) or in multiples within a group (4) between existing Toolset setups in Toolset Library File (*.tlf*) format and import and export in the standard CAN DBC (*.dbc*) format (5).

When you add a new stream, the stream appears in the streams list. Configure the stream at the right in the main window. In the General section you can configure the stream name (1), CAN Port allocation (2), Baud Rate (3) and a description (4).

General		
Configure the bas	sic properties that define this stream.	
Name	CAN Stream 1	
Direction	Encode	
CAN Port	CAN 01	
Baud Rate	1000000 ~ 3	
Description	Example CAN stream for User Guide	

Note: You can configure the CAN Port name on the <u>Hardware Settings</u> node.

If you configure multiple streams, you can select the 'display view' option to display the **Streams** list in groups linked to the CAN port allocation for each stream.

Streams	
\oplus $$	١
∠ CAN 01 (1)	đ
CAN Stream 1 CAN Stream Encode	0
▲ CAN 02 (1)	۲
CAN Stream 2 CAN Stream Encode	0
▲ CAN 03 (1)	۲
CAN Stream 3	0

In the **Protection** section you can add permissions to the stream via a dongle to allow you to edit or view the stream content. This feature is typically used by manufacturers to lock their setups, streams, and so on.

Protection	
Protecting the s	stream prevents users without an appropriate license from editing or tream and from viewing the stream's contents.
License	Unprotected *

The **Packets** section hosts each packet in the stream. Click **Edit Packets** to begin to create a packet.

Packets				
View the packets	that make up th	nis stream.		
·	- ·			
C Edit Packet	ts			
Name	CAN ID	Length (bits)	Bit Numbering	Endianness

Click the + button at the top left to create a new packet. This populates the list below with a new packet. Use the 'bin' icon to remove a selected packet Click the + button (1) to add a new packet. Use the 'bin' tool to delete an unwanted packet (2).

Once a packet is added, you can complete configuration from the main window. In the **General** section you can edit the **Name/CAN ID**, **Length**, **Bit Numbering/Endianness**, **Rate**, **Timeout**, **Timeout Status Channel**, and **Comment**. The **CAN ID** needs to be unique on for that specific CAN Port. The **Length** has a maximum of 64 bits. You can change **Endianness** according to preference, but it needs to correspond to the opposing Encode/Decode. For more information about Endianness/Bit Numbering methodologies click the **i** option. The **Rate** selected is the limit for all channels in that packet. The **Timeout** option is used to set an interval after which the Encode/Decode triggers the Timeout Behaviour (explained later in this section). You can use the **Timeout Status Channel** to generate a channel that records the status of a timeout.

General								
Configure the basic properties that define this packet.								
Name / CAN ID	CAN Packet 1	0x100	Standard Y					
Length	64	bits						
Bit Numbering / Endianness	Follows Endianness v	Big (Motorola) v	0					
Rate	500 ~	Hz						
Timeout	1.00	s						
Timeout Status Channel		\oslash						
Comment	Comment example							
Enabled	Always v							

To add a channel to the packet, click the + icon (1) in the **Channels** section. This adds a channel to the list (2) and populates the channel configurations (3) to the right. The channel list contains the following information: **Name**, **Type**, **Start Bit**, and **Length**.

Note: Channel names are limited to 24 characters, including spaces.

	Content				
	Configure the content that makes up this packet.		3		
1	\bigcirc	Ì	Quantity	user type ~	
2	Name CAN Channel 0 Type Channel ~ Start Bit 0 Length 1	Ŷ	Unit]
			Data Type	U32 ~	
			Gain	1]
			Offset	0	
			Scaled Data Type	F32 *	
			Default Value	0.000	
			Timeout Behavior	Hold ~	
			Is Protected		
	4		Comment]
	Preview Packet Layout				

Note: It is best to use a math channel when dealing with complex order of operations for Gain/Offset.

Click **Preview Packet Layout** (4), a visual representation of the packet layout is displayed. This enables an easier visualisation of the bit allocation of items within the packet. LSB means least significant bit and MSB means most significant bit (see below).

	7	6	5	4	3	2	1	0
0	63	62	61	60	59	58	57	56
1	55	54	53	52	51	50	49	48
2	47	46	45	44	43	42	41	40
3	39	38	37	36	35	34	33	32
4	31	30	29	28	27	26	25	24
5	23	22	21	20	19	18	17	16
6	15 CAN Chan MSB	14	13	12	11	10	9	8
7	7 CAN Chan	6	5	4	3	2	1	0 LSB

Hardware limitations

Each CAN Bus has a limit to the number of messages it can send or receive. Click on the <u>Hardware Settings</u> node to see details about CAN bus usage.

On the left side, a list is populated. Select **CAN Ports > Local** to view information about port usage.

4	Local Badenia 2
	Analog Inputs (20)
	CAN Ports (4)

This displays each CAN Port and its usage. It is recommended that you keep the utilization at 80% or below. Oversaturating the CAN bus can lead to CAN errors and potentially missed data.

CAN 01	
CAN 01	
C1.30 (hi), C1.18 (lo)	
\checkmark	
	5% (6)
	CAN 01 CAN 01 C1.30 (hi), C1.18 (lo)

You can use the **Terminate CAN Bus** option to apply a software selectable CAN bus termination. This acts as a physical termination for that bus, if required.

This is a complete CAN Bus setup that has two physical terminations.

Implement a Bit-masked CAN channel

Bit-masking a CAN channel can be useful when information from each bit is beneficial. When you create a CAN Channel there is an option to add a Bitmask. The Bitmask ANDs with the channel and returns the bit entries that are true. To create a Bit-masked CAN Channel, create a normal channel as described above, but set the **Type** to *Bit-Field Channel*.

Cont	ent					
Confi	gure the content that makes up this packet.					
\oplus						1
Name	CAN Bit-Field Channel 1	Туре	Bit-Field Channel 🛛 🗸	Start Bit	0 Length	16 👽
Name	CAN Channel 2	Туре	Channel ~	Start Bit	0 Length	16 🔮

Select Edit Bit-fields to edit the Bit-fields.

Configure the bit-fields of the selected channel.							
Default Value		0					
Timeout Behavior	Hold	~					
Is Protected							
🖉 Edit Bit-fields							
Comment	-						

A window is displayed where you can click the **+** icon to add a Bitmask. The top section relates to the Bitmask and the bottom section relates to bit-specific actions.

CAN Bit-Fiel	d Channel 1 E	Bit-fields				\otimes
Bitmask	Name		Abbr	Default Color	Default Text	\oplus
OxFFFFFFF	Bit-field 0		Bit-field 0	•	Unknown	٦
Configure the	entries for the	selected bit-field.				
Masked Bits:	11111111 111	11111 11111111	11111111			
Value	Color	Text				\oplus

The top section shows the actual **Bitmask**, **Name**, **Abbr**(eviation), **Default Color**, and **Default Text**. The Bitmask is in Hexadecimal. In the bottom section there is each entry for the specified bits. There are two ways to configure Bit-fields and each depend on which view you want to see in live data (see examples below).

Example 1

In this example, a 4 Bit-masked channel is created, consisting of 1 Bitmask and 5 entries. Click the + button (1) to create a Bitmask and change it to the desired value (here 0xF (2)). Click the lower + button to add a bit entry (3). The value (4) needs to equal the bit value being requested.

Note: The value needs to be in Hexadecimal. The first entry added is active when bit 1 in the channel is 1.

4	l Bit Channe	el Ex1 Bit-fi	elds Bit-fields					\otimes
	Bitmask	Name		Abbr	Default Color	Default Text	1	\oplus
2	0xF	Example 1		Ex 1	•	Off		
	Configure the Masked Bits:	entries for 00000000	the selected bit-field 00000000 00000000	0 00001111				
	Value	Color	Text				3	\oplus
4	0x1		Bit 1 is Active					

Four more entries are added. Value 0x2 activates when Bit 2 is active. Value 0x4 activates when Bit 3 is Active. Value 0x8 activates when Bit 4 is active, and Value 0xD activates when Bits 1, 3, 4 are Active.

Value	Color	Text	\oplus
0x1		✓ Bit 1 is Active	٢
0x2		✓ Bit 2 is Active	٢
0x4		✓ Bit 3 is Active	٢
0x8		✓ Bit 4 is Active	٢
0xD		 Bits 1, 3, 4 are Active 	1

You can view the output of this channel on the Live Data tab.

Add the channel 4 Bit Channel Ex1 Bit-fields (from above) to the **Live Data** page. The channel is displayed as seen below. The default value of this channel is set to 13 (0xD). Since there is no data coming across, the value reverts to the default.

4 Bit Channel Ex1 Bit-fields	
	Bits 1, 3, 4 are Active

Example 2

In this example, a 4 Bit-masked channel is created. There are 4 Bitmasks and 1 entry per Bitmask. Create 4 Bitmasks, but make each of them specific to each bit. The first mask (1) has a value of 0x1. This creates a mask for bit 1. (2)

Note: No Bitmasks can overlap.

	4 Bit Chann	el Ex2 Bit-f	ïelds Bit-fi	elds				\otimes
	Bitmask	Name			Abbr	Default Color	Default Text	\oplus
1	0x1	Bit 1			1	•	Off	1
	0x2	Bit 2			2	¥	Off	١
	0x4	Bit 3			3	•	Off	٢
	0x8	Bit 4			4	•	Off	١
	Configure th	e entries for	the selected	d bit-field.				
2.	Masked Bits:	00000000	00000000	00000000	0000001			
	Value	Color	Text					\oplus

For each mask, you must dd an entry that has the same value as the mask. For the first mask, an entry with the value of 0x1 is added.

Value	Color	Text	\oplus
0x1		▼ Bit 1 is Active	٦

Do this for each corresponding Bitmask. Go to the **Live Data** tab to view the channel. The channel is displayed as seen below. This method of Bit-masking is useful when several bits in a channel have independent importance. The default value of this channel is set to 1 (0x1). Since there is no data coming across, the value reverts to the default.

4 Bit Channel Ex2 Bit-fields			
Bit 1	Bit 2	Bit 3	Bit 4

Implement multiplexed CAN channels

You can use multiplexed CAN Channels to compress additional data into a single CAN packet/stream CAN packet.

To create a Multiplexed CAN Encode, two math channels are needed to locate and associate the CAN Channels in the packet. The first math channel is the Indexor. To create a math channel, click on the **Math Channels** node.

Click the + button (1) at the top left to create a new math channel. By default, this is added to the <Default> group of channels. To add channels to a group, highlight the required channels, click 'add group' (2), and name the group.

The first math channel is named Indexor. This is a counter and records the number of channels being multiplexed. In this example, three channels are being multiplexed. The equation required is:

```
a0 (choose (@a0 < 3, @a0+1, 0));
@a0
```

Set the rate to 100Hz and this channel counts to 2 from 0 at 100 increments per second.

Configure the	basic properties that define	this math channel.	
Name	Indexor	Quantity/Unit	user type ~
		Data Type	F32 ~
Comment			
Manufacturer	Status 🔘 This is a normal	item.	
Equation	ion that determines the valu	e of this math channel.	

The second channel needed is used to correlate the value from the Indexor to the channel being sent. In the example code below, when the Indexor is equal to 0, the output is Channel 1. When it is 1, the output is Channel 2, and so.

a0 (choose ([Indexor]==0, [Channel 1], choose ([Indexor]==1, [Channel 2], choose ([Indexor]==2, [Channel 3], 0)))); @a0

Gener	al			
Configu	ure the basic properties that define this math (channel.		
Name	Data	Quantity/Unit	user type ~	
		Data Type	F32 ~	
Comme	ent			
Manual	factures Chature			
Manut	acturer Status			
Manut	facturer Status 🔘 This is a normal item.			
Equati	on			
Edit the	equation that determines the value of this m	ath channel.		
1	a0 (choose ([Indexor]==0, [Chapped]	annel 1],	Function: "a0(x)"	
3	choose ([Indexor]==2, [Channel	1 3], 0))));	Assigns value 'x' to register 'a0'.	
4	@a0		x The value to assign to register 'a0'.	

Create a new CAN Stream Encode and add two channels to the packet. The source for the channels is the two math channels created above. In this example, data starts at 0 and is 8 bits long. The Indexor starts at 8 and is 2 bits long. The **Length** needs to be long enough to support the number of states. If the number of states is 3, then the length needs to be 2 bits (3 in binary is 11).

Cont	Content								
Confi	Configure the content that makes up this packet.								
\oplus						٦	Configure the proper	ties of the selected ch	hannel.
-		1		1			Source	Indexor	\odot
Name	Data	Туре	Channel 🗸	Start Bit	0 Length	8	Quantity	user type	~
Name	Indexor	Туре	Channel ~	Start Bit	8 Length	2	Data Type	U32	v
							Gain		1
							Offset		0
<						>	Comment		
P	eview Packet Layout								

When this is done, the channels added to the Data math channel are transmitted across CAN in a multiplexed message.

To create a Multiplexed CAN Decode, create a CAN packet and add an Indexor channel. Under channel type, select 'Indexor'. To the right, enter the **Number of States**. For this example, this 3. Select the **Start Bit** and the **Length**.

Next add the required channels. Create a new channel and set its type as 'Multiplexed Region'. In this example, add Channel #1, Channel #2, and Channel #3. The **Start Bit** and **Length** are the same for all three. Each channel will have its own Mux Index (0-2).

Click on **Preview Packet Layout** in the **Channels** section to view the packet layout. On the left, the Mux Indices are displayed. Click on an index to display each Mux and the layout for that packet.

Virtual analog and digital inputs

You can use CAN messages as virtual analog and digital sensor inputs. In other words, when the message within a packet is configured as either an 'Analog Voltage Input' or 'Digital Level Input' then the value transmitted over CAN is interpreted as an analog or digital input, respectively.

Cont	ent						
Confi	gure the content that makes up this packet.						
\oplus							
Name	CAN Analog Input 1	Туре	Analog Voltage Input 🛛 👻	Start Bit	0	Length	8
			Channel				
			Bit-Field Channel				
			Indexor				
			Analog Voltage Input				
			Digital Level Input				
			Button Group				
			Multiplexed Region	1			

Once the CAN message is configured as either an 'Analog Voltage Input' or 'Digital Level Input', they appear as a virtual input on the <u>Sensors node</u>. You can then configure the virtual sensor and calibrate it like a standard analog or digital input (see <u>Setups – Sensors</u>).

Input Sensor Pairs	
	Ŵ
Analog Inputs (40)	۲
Digital Inputs (10)	۲
 Virtual Analog Inputs (1) 	۲
CAN Analog Input 1 Virtual Analog Voltage Input No Termination	
▲ Virtual Digital Inputs (1)	۲
CAN Digital Input 1 Virtual Digital Level Input Digital Level Input	

Buttons groups

You can also configure CAN messages to be interpreted as button presses. For example, bits within an 8-bit message can be configured to act as different button press types (for example clicked, click latched, held, and so on).

\oplus					
Name CAN Button Group 0	Туре	Button Group 🛛 🗸	Start Bit	0 Length	8
		Channel			
		Bit-Field Channel			
		Indexor			
		Analog Voltage Input			
		Digital Level Input			
Preview Packet Layout		Button Group			
		Multiplexed Region			

Once a CAN message is configured to be a 'Button Group', click **Edit Buttons...** to add buttons.

\oplus		ſ	Ì	Configure the buttons of the selected button group.
Name CAN Button Group	Type Button Group	✓ Start Bit	0	Timeout Behavior Hold Y
				Is Protected
<			>	Comment
Preview Packet Layout				

You can then use the + button (1) to add button inputs and name them in the text box (2.) Use the 'reorder arrows' (3) to change the button order, Use the 'bin' tool to delete buttons (4).

C	AN Button Group Buttons	\otimes
	Edit the buttons within this group. Buttons are allocated one bit each, starting at the first bit configured for the content.	
1	(↑ () 3	4
2	CAN Button 0	
	CAN Button 1	
	CAN Button 2	
	CAN Button 3	
	CAN Button 4	
	CAN Button 5	
	CAN Button 6	
	CAN Button 7	

Refer to <u>Setups – Buttons</u> for more information about how to configure a CAN button.

CAN CHP2 debug channels

<can device="" name="">_RxPackets</can>	Increments by one when a packet received is read (that is, at the receive rate)
<can device="" name="">_TxPackets</can>	Increments by one when a packet being sent is written (that is. at the transmit rate)
<can device="" name="">_BusOffCount</can>	Increments each time a device is detected in the bus off state and is restarted
<can device="" name="">_BusState</can>	 Bit encoded see below: Bit 0 : Error State - Set when the device is ERROR_ACTIVE (as per the CAN specification) Bit 1 : Bus Warn - Set when bus is heavily disturbed (as per CAN spec one of the CAN Error counters exceeds 96) Bit 2 : Bus Off - Module is in the bus off state Cleared when the device is ERROR_PASSIVE (as per the CAN specification)

<can device<="" th=""><th>Numerically encoded see below:</th></can>	Numerically encoded see below:
Name>_LastErrorCode	
	 Value = 0 - Received or transmitted a packet successfully
	 Value = 1 - Bit Stuff Error – More than 5 equal bits in sequence received where this is not allowed
	 Value = 2 - Format Error - A fixed format part of a received frame has the wrong format
	 Value = 3 - No ACK – A frame transmitted has not been acknowledged by another node
	 Value = 4 - Dominant Bit Error – During the transmission of a packet (except for the arbitration field) the device wanted to send a recessive level, but the monitored bus level was dominant
	 Value = 5 - Recessive Bit Error – During the transmission of a packet, or acknowledge, or active error flag, or overload flag the device wanted to send a dominant bit, but the monitored bus level was recessive
	 Value = 6 - Received CRC error – The CRC of the packet received does not match the calculated CRC
	 Value = 7 - No CAN Bus errors detected since last update

Debug channels setup

To enable these channels first create them in the setup. On the **Debug Channels** node, select **Advanced**.

Note: If this node is not available on the setup, enable it on the Settings tab under Setup Diagnostics.

Click the + button to create a channel. The **Name** must match the name used in the above table (<CAN Device Name> = can.0 (for CAN port 1), <CAN Device Name> = can.1 (for CAN port 2), and so on).

Set Quantity/User to 'user type', Data Type to'U32', and Rate to '5Hz', as shown below.

General			
Name	can.0_TxPackets		
Description			
Quantity/Unit	user type	Ŷ	
Data Type	U32	Ŷ	
Rate	50	~	Hz

For two CAN ports there should be these channels.

Debug Channels	
Predefined Debug Channels	Advanced
\oplus	1
can.0_BusOffCount	
can.0_BusState	
can.0_LastErrorCode	
can.0_RxPackets	
can.0_TxPackets	
can.1_BusOffCount	
can.1_BusState	
can.1_LastErrorCode	
can.1_RxPackets	
can.1_TxPackets	

The channels are then available to log:

Note: When You create the channel, it might display as empty. To save the setup, close it, and then re-open it.

Allowable rates

When multiplexing, only certain rates are allowed for the packet. This value is dependent on the number of multiplexing states. This table defines what is allowed in Toolset for all of Cosworth devices.

	The chart below details allowable channel rates for multiplexed CAN streams. The individual channels must be sent at legal rates, defined by dividing the packet rate by the number of channels. Only certain integers are allowed for the channel rates.																				
	Green is an allowable rate Red is an illegal rate.																				
										Number	of Chan	nels in P	acket								
	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19												20								
	1	1.00	0.50	0.33	0.25	0.20	0.17	0.14	0.13	0.11	0.10	0.09	0.08	0.08	0.07	0.07	0.06	0.06	0.06	0.05	0.05
	2	2.00	1.00	0.67	0.50	0.40	0.33	0.29	0.25	0.22	0.20	0.18	0.17	0.15	0.14	0.13	0.13	0.12	0.11	0.11	0.10
	5	5.00	2.50	1.67	1.25	1.00	0.83	0.71	0.63	0.56	0.50	0.45	0.42	0.38	0.36	0.33	0.31	0.29	0.28	0.26	0.25
te	10	10.00	5.00	3.33	2.50	2.00	1.67	1.43	1.25	1.11	1.00	0.91	0.83	0.77	0.71	0.67	0.63	0.59	0.56	0.53	0.50
t Ra	20	20.00	10.00	6.67	5.00	4.00	3.33	2.86	2.50	2.22	2.00	1.82	1.67	1.54	1.43	1.33	1.25	1.18	1.11	1.05	1.00
ke	50	50.00	25.00	16.67	12.50	10.00	8.33	7.14	6.25	5.56	5.00	4.55	4.17	3.85	3.57	3.33	3.13	2.94	2.78	2.63	2.50
Pac	100	100.00	50.00	33.33	25.00	20.00	16.67	14.29	12.50	11.11	10.00	9.09	8.33	7.69	7.14	6.67	6.25	5.88	5.56	5.26	5.00
	200	200.00	100.00	66.67	50.00	40.00	33.33	28.57	25.00	22.22	20.00	18.18	16.67	15.38	14.29	13.33	12.50	11.76	11.11	10.53	10.00
	500	500.00	250.00	166.67	125.00	100.00	83.33	71.43	62.50	55.56	50.00	45.45	41.67	38.46	35.71	33.33	31.25	29.41	27.78	26.32	25.00
	1000	1000.00	500.00	333.33	250.00	200.00	166.67	142.86	125.00	111.11	100.00	90.91	83.33	76.92	71.43	66.67	62.50	58.82	55.56	52.63	50.00