
SETUPS – STREAMS - CAN Revision 0.48 

Date 25/03/2025 

 

1 
 

 
  

CAN streams overview  
Control Area Network (CAN) is a widely used communication protocol for system integration. Most Cosworth 
devices support CAN communication and interfacing with both Cosworth and third-party CAN devices. The 
Streams node is used to configure CAN streams. 
 

Create a CAN stream   

Within a setup, click on the ‘Streams’ option on the left side or use the Streams node 
to access all the CAN streams. The hierarchy of a CAN steam is as follows: Stream, 
Packets, Bytes, and Bits. Channels can be multiple Bytes or Bits.  

 
To create a new stream, hover over the + button (1) and select either CAN Decode or CAN Encode (2). Use the 
‘bin’ tool to delete unwanted streams (3). 
 

 
  

2 

1 3 



 

2 
 

You can import (1) and export (2) streams either individually (3) or in multiples within a group (4) between 
existing Toolset setups in Toolset Library File (.tlf) format and import and export in the standard CAN DBC 
(.dbc) format (5).  
 

When you add a new stream, the stream appears in the streams list. Configure the stream at the right in the 
main window. In the General section you can configure the stream name (1), CAN Port allocation (2), Baud 
Rate (3) and a description (4).   
 

 
Note: You can configure the CAN Port name on the Hardware Settings node. 
 

2 1 

3 4 5 

1 

2

3

4



 

3 
 

If you configure multiple streams, you can select the ‘display view’ option to display the Streams list in 
groups linked to the CAN port allocation for each stream.  

 
In the Protection section you can add permissions to the stream via a dongle to allow 
you to edit or view the stream content. This feature is typically used by manufacturers 
to lock their setups, streams, and so on. 

 
The Packets section hosts each packet in the stream. Click Edit Packets to begin to create a packet.   
 
  



 

4 
 

 
 

Click the + button at the top left to create a new packet. This populates the list below with a new packet. Use 
the ‘bin’ icon to remove a selected packet Click the + button (1) to add a new packet. Use the ‘bin’ tool to delete 
an unwanted packet (2).  

  
Once a packet is added, you can complete configuration from the main window. In the General section you 
can edit the Name/CAN ID, Length, Bit Numbering/Endianness, Rate, Timeout, Timeout Status Channel, and 
Comment. The CAN ID needs to be unique on for that specific CAN Port. The Length has a maximum of 64 
bits. You can change Endianness according to preference, but it needs to correspond to the opposing 
Encode/Decode. For more information about Endianness/Bit Numbering methodologies click the i option. 
The Rate selected is the limit for all channels in that packet. The Timeout option is used to set an interval 
after which the Encode/Decode triggers the Timeout Behaviour (explained later in this section). You can use 
the Timeout Status Channel to generate a channel that records the status of a timeout.  

  
To add a channel to the packet, click the + icon (1) in the Channels section. This 
adds a channel to the list (2) and populates the channel configurations (3) to the 
right. The channel list contains the following information: Name, Type, Start Bit, and 
Length.  
 
Note: Channel names are limited to 24 characters, including spaces. 
  

1

 

2

 



 

5 
 

 
Note: It is best to use a math channel when dealing with complex order of operations for Gain/Offset.  
  

1 

2 

3 

4 



 

6 
 

Click Preview Packet Layout (4), a visual representation of the packet layout is 
displayed. This enables an easier visualisation of the bit allocation of items within 
the packet. LSB means least significant bit and MSB means most significant bit (see 
below).  

  
 

Hardware limitations   

Each CAN Bus has a limit to the number of messages it can send or receive. Click on the Hardware Settings 
node to see details about CAN bus usage.  
 
On the left side, a list is populated. Select CAN Ports > Local to view information about port usage.   

  

 



 

7 
 

This displays each CAN Port and its usage. It is recommended that you keep the utilization at 80% or below. 
Oversaturating the CAN bus can lead to CAN errors and potentially missed data.  

 
You can use the Terminate CAN Bus option to apply a software selectable CAN bus termination. This acts as a 
physical termination for that bus, if required. 
 
This is a complete CAN Bus setup that has two physical terminations.  
  

Implement a Bit-masked CAN channel  

Bit-masking a CAN channel can be useful when information from each bit is beneficial. 
When you create a CAN Channel there is an option to add a Bitmask. The Bitmask ANDs with the channel and 
returns the bit entries that are true. To create a Bit-masked CAN Channel, create a normal channel as 
described above, but set the Type to Bit-Field Channel.  
 

 
  

  

  
  

Badenia 



 

8 
 

Select Edit Bit-fields to edit the Bit-fields.  

 
A window is displayed where you can click the + icon to add a Bitmask. The top section relates to the 
Bitmask and the bottom section relates to bit-specific actions.   
 

 
 
The top section shows the actual Bitmask, Name, Abbr(eviation), Default Color, and Default Text. The Bitmask 
is in Hexadecimal. In the bottom section there is each entry for the specified bits. There are two ways to 
configure Bit-fields and each depend on which view you want to see in live data (see examples below).   
 

Example 1 

 
In this example, a 4 Bit-masked channel is created, consisting of 1 Bitmask and 5 entries. Click the + button 
(1) to create a Bitmask and change it to the desired value (here 0xF (2)). Click the lower + button to add a bit 
entry (3). The value (4) needs to equal the bit value being requested.  
 
Note: The value needs to be in Hexadecimal. The first entry added is active when bit 1 in the channel is 1.    
 

 
 

1 

3 
4 

2 



 

9 
 

Four more entries are added. Value 0x2 activates when Bit 2 is active. Value 0x4 activates when Bit 3 is Active. 
Value 0x8 activates when Bit 4 is active, and Value 0xD activates when Bits 1, 3, 4 are Active.   

 
 
You can view the output of this channel on the Live Data tab. 

 
Add the channel 4 Bit Channel Ex1 Bit-fields (from above) to the Live Data page. The channel is displayed as 
seen below. The default value of this channel is set to 13 (0xD). Since there is no data coming across, the 
value reverts to the default.   

 
 

Example 2   

In this example, a 4 Bit-masked channel is created. There are 4 Bitmasks and 1 entry per Bitmask. Create 4 
Bitmasks, but make each of them specific to each bit. The first mask (1) has a value of 0x1. This creates a 
mask for bit 1. (2)  
 
Note: No Bitmasks can overlap.  
 

 
 
For each mask, you must dd an entry that has the same value as the mask. For the first mask, an entry with 
the value of 0x1 is added.  
 

 
 

1 

2. 



 

10 
 

Do this for each corresponding Bitmask. Go to the Live Data tab to view the channel. The channel is 
displayed as seen below. This method of Bit-masking is useful when several bits in a channel have 
independent importance. The default value of this channel is set to 1 (0x1). Since there is no data coming 
across, the value reverts to the default.  

 
 

Implement multiplexed CAN channels  

You can use multiplexed CAN Channels to compress additional data into a single CAN packet/stream CAN 
packet.  
  
To create a Multiplexed CAN Encode, two math channels are needed to locate and associate the CAN 
Channels in the packet. The first math channel is the Indexor. To create a math channel, click on the Math 
Channels node.   
 

Click the + button (1) at the top left to create a new math channel. By default, this is added to the <Default> 
group of channels. To add channels to a group, highlight the required channels, click ‘add group’ (2), and 
name the group.  
 

 
The first math channel is named Indexor. This is a counter and records the number of channels being 
multiplexed. In this example, three channels are being multiplexed. The equation required is: 
  
         a0 (choose (@a0 < 3, @a0+1, 0));  
    @a0  
  
Set the rate to 100Hz and this channel counts to 2 from 0 at 100 increments per second.    
 

1 2 



 

11 
 

 
 
The second channel needed is used to correlate the value from the Indexor to the channel being sent. In the 
example code below, when the Indexor is equal to 0, the output is Channel 1. When it is 1, the output is 
Channel 2, and so.  
  
    a0 (choose ([Indexor]==0, [Channel 1],    
  choose ([Indexor]==1, [Channel 2],  
         choose ([Indexor]==2, [Channel 3], 0))));  
    @a0  

 
 



 

12 
 

Set the rate to ‘Inherit rate from Indexor’ and this math channel uses the same rate as the channel Indexor. 
The channels that are requested need to match the rate of the Indexor/Data channels. 
  
Create a new CAN Stream Encode and add two channels to the packet. The source for the channels is the two 
math channels created above. In this example, data starts at 0 and is 8 bits long. The Indexor starts at 8 and 
is 2 bits long. The Length needs to be long enough to support the number of states. If the number of states 
is 3, then the length needs to be 2 bits (3 in binary is 11).   

 
When this is done, the channels added to the Data math channel are transmitted across CAN in a 
multiplexed message. 
  
To create a Multiplexed CAN Decode, create a CAN packet and add an Indexor channel. Under channel type, 
select ‘Indexor’. To the right, enter the Number of States. For this example, this 3. Select the Start Bit and the 
Length.   
  
Next add the required channels. Create a new channel and set its type as ‘Multiplexed Region’. In this 
example, add Channel #1, Channel #2, and Channel #3. The Start Bit and Length are the same for all three. 
Each channel will have its own Mux Index (0-2).  
 
Click on Preview Packet Layout in the Channels section to view the packet layout. On the left, the Mux Indices 
are displayed. Click on an index to display each Mux and the layout for that packet.  

 



 

13 
 

 

Virtual analog and digital inputs 

You can use CAN messages as virtual analog and digital sensor inputs. In other words, when the message 
within a packet is configured as either an ‘Analog Voltage Input’ or ‘Digital Level Input’ then the value 
transmitted over CAN is interpreted as an analog or digital input, respectively.  

 
Once the CAN message is configured as either an ‘Analog Voltage Input’ or ‘Digital Level Input’, they appear as 
a virtual input on the Sensors node. You can then configure the virtual sensor and calibrate it like a standard 
analog or digital input (see Setups – Sensors). 

  



 

14 
 

 

Buttons groups 

You can also configure CAN messages to be interpreted as button presses. For example, bits within an 8-bit 
message can be configured to act as different button press types (for example clicked, click latched, held, 
and so on).  

 
Once a CAN message is configured to be a ‘Button Group’, click Edit Buttons… to add buttons.  
 
 
 
 
 
 
 
 
  
You can then use the + button (1) to add button inputs and name them in the text box (2.) Use the ‘reorder 
arrows’ (3) to change the button order, Use the ‘bin’ tool to delete buttons (4).  

 

1

2

43



 

15 
 

 
Refer to Setups – Buttons for more information about how to configure a CAN button. 
 

CAN CHP2 debug channels  

<CAN Device Name>_RxPackets  Increments by one when a packet received is read (that is, at 
the receive rate)  

<CAN Device Name>_TxPackets  Increments by one when a packet being sent is written (that 
is. at the transmit rate)  

<CAN Device Name>_BusOffCount  Increments each time a device is detected in the bus off state 
and is restarted  

<CAN Device Name>_BusState  Bit encoded see below:  
  

• Bit 0 : Error State  -  Set when the device is 
ERROR_ACTIVE (as per the CAN specification)  

• Bit 1 : Bus Warn   -  Set when bus is heavily disturbed 
(as per CAN spec one of the CAN Error counters 
exceeds 96)  

• Bit 2 : Bus Off  - Module is in the bus off state  

Cleared when the device is ERROR_PASSIVE (as per the CAN 
specification)  



 

16 
 

<CAN Device 
Name>_LastErrorCode  

Numerically encoded see below:  

• Value = 0 -  Received or transmitted a packet 
successfully  

• Value = 1 -  Bit Stuff Error – More than 5 equal bits in 
sequence received where this is not allowed  

• Value = 2 - Format Error  - A fixed format part of a 
received frame has the wrong format  

• Value = 3 - No ACK – A frame transmitted has not been 
acknowledged by another node  

• Value = 4 - Dominant Bit Error – During the 
transmission of a packet (except for the arbitration 
field) the device wanted to send a recessive level, but 
the monitored bus level was dominant  

• Value = 5 - Recessive Bit Error – During the 
transmission of a packet, or acknowledge, or active 
error flag, or overload flag the device wanted to send 
a dominant bit, but the monitored bus level was 
recessive  

• Value = 6 - Received CRC error – The CRC of the packet 
received does not match the calculated CRC  

• Value = 7 - No CAN Bus errors detected since last 
update  

  

Debug channels setup 

To enable these channels first create them in the setup. On the Debug Channels node, select Advanced.  

 
Note: If this node is not available on the setup, enable it on the Settings tab under Setup Diagnostics. 

 
Click the + button to create a channel. The Name must match the name used in the above table (<CAN Device 
Name> = can.0 (for CAN port 1), <CAN Device Name> = can.1 (for CAN port 2), and so on). 
 

  



 

17 
 

Set Quantity/User to ‘user type’, Data Type to’U32’, and Rate to ‘5Hz’, as shown below. 
 

 
 

For two CAN ports there should be these channels. 

 
 
The channels are then available to log: 
 

 
 

Note: When You create the channel, it might display as empty. To save the setup, close it, and then re-open it. 
 
 
 



 

18 
 

 
 
 

Allowable rates 

When multiplexing, only certain rates are allowed for the packet. This value is dependent on the number of 
multiplexing states. This table defines what is allowed in Toolset for all of Cosworth devices. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


