
SETUPS - WIPERS Revision 0.29

Date 03/04/2025

1

Wipers overview
Windshield wipers are a crucial part of a race car and cannot afford to fail when rain falls during a race. You
can configure the wiper control output from a power box, such as the Centaurus, or an older device such as
the IPS, in many ways. This guide provides an overview of how to configure a wiper control output from the
Wipers node, as well as other ‘traditional’ methods using maths and logic channels.

Wipers node

You can configure wiper control outputs from the Wipers node. Enable the wiper control output in the Wipers
node (1), and then select the LIN Port to which the wiper is connected (2). Select the LIN Bit Rate from the
dropdown menu to match the LIN bus bit rate (3.). You can select one of three common wiper models from
the dropdown menu (4).

Finally, use the ‘browse’ button to specify the channel to drive the control (5).

Note: The wiper control channel can be a logic channel, a Maths channel, or a channel received over CAN,
but the data type must be in U32 format.

Manual configuration of wiper output control

Wiper basic

Analog wipers usually require a minimum of four wires to be connected to control individual motor windings.
These wires normally consist of:

• Power
• GND
• Slow coil
• Fast Coil

1

2

3

4

5

2

Unlike LIN wipers, where the logic is controlled on the wiper motor itself, the logic to control the wiper motor
needs to be integrated into the setup of the device controlling the motor. In this case, a Centaurus 5 is being
used as an example.

The basic requirements to control an analogue wiper motor are outlined in this document, but you can
implement further logic to add features such as intermittent settings.

In this example, the control logic is written on the Logic Channels node to create a simple setup, but this
logic can also be written in the maths channels if required.

The logic for the wiper is triggered on the button press of a switch panel. This can be via an RSP or CAN input
from external devices.

Maths channels

POC Enable LSD 51

The ‘Park’ feature of the Centaurus (the LSD) needs to be activated via the maths channel POC Enable LSD 51
option. This channel name must match to invoke the LSD.

The example maths above show, the two conditions of the wiper speeds and the switch park. These
conditions are fully customisable but, in this case, a physical button press is being used. These messages can
come from anywhere, for example from the CAN bus or from digital inputs.

Logic channels

Wiper button press

This channel receives the input from the physical button. When the button is pressed, the logic channel
returns ‘True’.

3

Wiper counter

This channel is a counter which determines how many times the button has been pressed. It is set to
increase on each button press and determines at which speed to run the wipers.

4

In this example you can only press the button three times for the three different states:

1. Intermittent Wiper
2. Slow Wiper
3. Fast Wiper

Intermittent wiper

To control the intermittent setting, a timer needs to be used to set the active high status. You can define the
timer, specific to your requirements.

Slow wiper

When this logic returns ‘True’, the wipers activate in slow mode. This is controlled by the counter and by
setting it to return ‘True’ when ‘Cnt_Wiper_Speeds’ is equal to 1. Other conditions can be added to make sure
that wipers do not run when the kill switch is active and when the car is powered off.

Alternatively, if you press the washer button this automatically enables the ‘Slow wipe’ and bypasses the
other parameters.

Wipers advanced

Note: This guide describes how you can configure analogue wipers for a IPS32 or IPS48 device. These are only
guidelines on how to set up your IPS32 with wipers and the precautions to take. You can modify these
guidelines to meet customer requirements, but setups should always be tested before being implemented
on a car.

5

General principle

Unlike the LIN wiper, the analogue wiper does not have any inbuilt ‘intelligence’. The controller (in this case
the IPS) must tell the wiper when to go slow, go fast, or stop. The loom between the IPS and the wiper is
usually composed of 4 wires.

The ground link is usually already routed directly to the chassis. The FAST and SLOW lines are the ‘power’
lines which supply 12V to the fast and slow motors, respectively. The SLOW line supplies current to the full
length of the motor windings, whereas the FAST line supplies current to half the length of the motor
windings. This is how the two different wipers speeds are controlled.

The PARK signal is a signal from the wiper system that the IPS uses to calculate when to stop and apply the
brake. It is usually either a tooth or missing tooth on the wiper motor track. As the motor rotates it passes
this (missing) tooth once a rotation and a mechanical switch linked to this track outputs a digital signal
depending on whether a contact is registered.

6

Precautions when you connect to the IPS

To stop the wipers in a controlled and accurate manner, the motor can be 'braked’ by removing the live
current supply to the motor and connecting it directly to ground. Outputs 1 and 17 on the IPS have this
feature, so it is recommended that these outputs are used to supply the slow motor. To apply this brake,
either the channel ‘[POC Enable LSD 1]’ or the channel ‘[POC Enable LSD 17]’ must output 1.

Without this feature you can only supply live current to the wiper, so stopping the wiper in the correct
position is difficult to do accurately, relying on the friction applied to the wipers and the inertia of the motor
to slow it to a halt. With the added complication of varying inertia on the wipers themselves (depending on
the condition of the surface of the windscreen and the speed of the vehicle), an active stopping mechanism
is required to make sure that the wipers stop in the 'park' position.

Note: You must take care when you apply the 'brake' as the IPS is not protected against accidentally
supplying live current to the output and connecting it to ground at the same time. This could cause serious
damage to both the IPS and the wiper.

Control the wipers

In this example, five math channels control analogue wipers. Below is an explanation of the function of
these five math channels and the names assigned to them:

1. One master channel runs as a 'state machine' and controls the state of the system
[DEMAND_WIPER_USER]

2. One that controls the ‘Slow’ wipe - [CONTROL_SLOW_WIPE]
3. One that controls the ‘Fast’ wipe - [CONTROL_FAST_WIPE]
4. One that controls the ‘Brake’ - [POC Enable LSD 17]
5. One to run as a counter for the duration that the ‘Brake’ is applied - [Brake Counter]

The driver in this example has one button (usually on the steering wheel) enables them to switch between
SLOW/FAST/OFF.

Note: This is only an example, and might not suit every customer (for example, the sequence means that the
wiper operates in the following order to be turned off, which may not suit some applications): SLOW > FAST >
OFF.

When the system is running Fast and a Stop is requested, it returns to Slow before stopping at the park
signal. This means that the process sequence is: SLOW > FAST > (SLOW > BRAKE > OFF).

7

The flowchart below explains the state machine process that the system follows, with conditions for each
change. 'State' represents the value of the output from the channel ‘DEMAND_WIPER_USER’:

8

Link to the outputs

The output channels to power the two speeds are ‘[CONTROL_SLOW_WIPE]’ and ‘[CONTROL_FAST_WIPE]’.
Allocate ‘[CONTROL_SLOW_WIPE]’ to either output 1 or 17 (the channels in this example are set up to use
output 17).

Allocate ‘[CONTROL_FAST_WIPE]’ to output 18. The loom should have pins connected from these sockets to
the power inputs on the wiper motor.

Set up the Park signal, received as a digital input from the wiper motor, as a button named ‘[WIPER_PARK
Button]’.

Set the wiper control button as a button named ‘[WIPER Button]’. The ground for the wiper must go directly
to ground.

Appendix

Master wiper channel - DEMAND_WIPER_USER

This is the channel that controls the changing state of the wiper system, on which output functions rely and
into which other channels feed information. To keep all these synchronised, it is recommended that all wiper
channels are calculated at the same rate (for example, 50Hz).

DEMAND_WIPER_USER

a5 ([WIPER_PARK Button] & 1);

a6 (choose ((@a5 > @a4) , 1 , (choose ((@a5< @a4) , 2 , 0)))) ;

a4 (@a5);

a2 (choose (@a2 == 4 , 5 , @a2)) ;

a0 (choose(((shr([WIPER Button] , 1)) & 1) > @a1, 1 , 0)) ;

a1 ((shr ([WIPER Button], 1) & 1)) ;

a2 (choose (((@a0) == 1) ,choose (@a2 == 3 , 3 , choose (@a2 < 4 , @a2 + 1 , 4)) , @a2)) ;

a2 (choose ((@a2 == 3) && (@a6 == 2) , 4 , @a2)) ;

 a3 (choose ((@a2 == 4) , 0 , @a3)) ;

a3 (choose ((@a3 < 6) , @a3 + 1, 6)) ;

a2 (choose ((@a3 == 5) , 0 , @a2)) ;

@a2

9

There are seven registers in this channel (a0, a1, a2, a3, a4, a5, a6, a7). Each of these has a different function
in the calculation of the channel output. To explain the purpose of each register, from the start of the
channel:

• a4, a5, and a6 are all used to calculate whether a rising or falling edge has been received from the
‘WIPER_PARK Button’.

• a5: This register takes the value of the wiper park button. When the system is in the park position
(once per revolution) the value of a5 is 1. At all other times it is zero.

• a4: This register displays the value of a5 from the previous cycle to allow the two to be compared by
a6.

• a6: This register detects whether a rising edge or falling edge of the WIPER_PARK Button is received.
This is done by comparing a4 and a5: if a5 is larger than a4 (as this is a digital signal, this means that
as a5 is 1 and a4 is 0), then a rising edge is detected, as the current value is 1 and the previous value
is 0. Conversely, if a4 is larger than a5, then a falling edge is detected. a6 displays 1 for a rising edge,
2 for a falling edge, and 0 if no change is seen.

• a0 and a1 are used to recognise a rising edge of the WIPER Button.
• a0: This register compares the current value from the WIPER Button (1 or 0) with the previous value

(held by a1). If a rising edge is detected, the current value is greater than the previous value and a0
outputs a 1, otherwise 0.

• a1: This register holds the previous state of the WIPER Button for comparison with a0.
• a2: This is the final output from the channel, which has six states.
• a2 = 0: Initial state of the system, no power applied until a button is pressed.
• a2 = 1: Button has been pressed once, power applied to slow motor.
• a2 = 2: Button has been pressed again, power applied to fast motor and not to slow motor.
• a2 = 3: Button has been pressed again and a stop requested. This button press sets in motion the

remaining states. The system returns to powering the slow motor only and remains in this state until
a rising edge of the WIPER_PARK Button is detected (a6 = 1).

• a2 = 4: WIPER_PARK Button rising edge is detected, power is removed from slow motor, brake applied,
counter is started, and state moves to a2 = 5.

• a2 = 5: Brake is held on for set duration, then a2 moves back to state 0, with wipers stopped and no
power to any motors or brakes.

• a3 is a counter to keep track of whether the brake is on or off.
• a3: This register counts from 0 to 6. It starts from a3 = 0 and a2 shifts to 0 when it detects that a3 = 5;

a3 resets to 0 once it reaches a3 = 6. This register is required to make sure that the brake is not
applied at the same time as power is applied to one of the motors.

Initially the channels were set up so that the brake came on once it detected that ‘[DEMAND_WIPER_USER]’
was at state 4, stayed on for a set amount of time, and then ‘[DEMAND_WIPER_USER]’ moved to state 5 once it
detected that the brake was off. However, this was not possible because the two maths channels could not
both be dependent on each other. Therefore, two counters were created which worked simultaneously. They
both start when they detect that ‘[DEMAND_WIPER_USER]’ is at state 4, but one turns off the brake when it
reaches a certain value, and the other moves ‘[DEMAND_WIPER_USER]’ from state 5 to state 0 when it reaches
that same value. Register a3 is the counter which controls the change of state from 5 to 0. A separate
channel, ‘Brake Counter’ controls turning off the brake. ‘[Brake Counter]’ is displayed below:

10

Brake Counter

a1 (choose (([DEMAND_WIPER_USER] == 4) , 0 , choose ((@a1 < 6) , @a1 + 1 , @a1))) ;
@a1

This counter is reset to zero when it detects that DEMAND_WIPER_USER = 4, then increments up by one each
cycle until it reaches 6, then rests at 6 until it detects DEMAND_WIPER_USER = 4 again.
The brake is controlled by the channel ‘POC Enable LSD 17’ (shown below):

POC Enable LSD 17 (Alternatively 'POC Enable LSD 1' if using output 1)

a1 (choose (([DEMAND_WIPER_USER] == 4) , 1 , (choose (([Brake Counter] < 5) , 1 , 0)))) ;
@a1

This channel applies the brake whenever it detects that either DEMAND_WIPER_USER = 4 or Brake Counter is
below 5. Therefore, as soon as Brake Counter = 6, the brake is off.

Power Outputs

The remaining two channels are the outputs from the IPS to control the slow and fast motion of the wipers.

These are CONTROL_SLOW_WIPE and CONTROL_FAST_WIPE: CONTROL_SLOW_WIPE

a0 (choose (([DEMAND_WIPER_USER] == 1) , 1 , 0)) ;

a1 (choose ([DEMAND_WIPER_USER] == 3 , choose (@a1 == 5 , 5 , @a1 + 1) , 0)) ;

a2 (choose ((@a0 == 1 || @a1 == 5) && ([POC Enable LSD 17] == 0) , 1 , 0)) ;

@a2

This channel engages the slow mode of the wiper motor when DEMAND_WIPER_USER = 1 and when
DEMAND_WIPER_USER = 3 (after a delay of 5 cycles). In both cases, POC Enable LSD 17 must be zero for the
motor to be engaged.

CONTROL_FAST_WIPE

choose (([DEMAND_WIPER_USER] == 2) && ([CONTROL_SLOW_WIPE] == 0) && ([POC Enable LSD

17] == 0) , 1 , 0)

This channel engages the fast mode of the wiper whenever all of the following conditions are met:
DEMAND_WIPER_USER = 2, CONTROL_SLOW_WIPE is off and POC Enable LSD 17 is off.

11

Note: Some logical AND (&&) and logical OR (||) functions are used in these math channels. Care must be
taken when you use these. It is strongly recommended that parenthesis are used wherever appropriate to
separate each member of a logical operation to avoid miscalculations:

(xxxxxx > 1) && (yyyyyy == 2)
((xxxxxx == 0) || (yyyyyy > 4)) && (zzzzzz != 0)

Function explanations

Function Description Syntax

choose The choose function is a logical
'if', which gives one output if the
statement is true, and another
output if the statement is false.

choose('Statement' , Output if statement true , Output if statement
false)

Registers Variables to which values can be
set. Up to 7 registers can be used
in any channel, identified by
their number
(ranging from 0 - 6)

To set register value: a1(value)

To reference register in other function: @a1

Available registers:

a0 /@a0
a1 / @a1
a2/ @a2
a3 /@a3
a4 /@a4
a5 /@a5
a6 /@a6

 Example:

a2 (7) ; ---> set a2 value to 7

choose (@a2 == 7 , 1 , 0) ; ---> If a2 is equal to 7, output 1,
otherwise output 0

== Logical 'is equal to' choose (@a4 == 1 , 3 , 4) ; ---> If register @a4 is equal to 1 then
output 3, otherwise output 4

< Logical 'is less than' choose (@a1 < @a5 , 9 , 2) ; ---> If register @a1 is less than the
register @a5, then output 9, otherwise output 2

> Logical 'is greater than' choose (@a1 > @a5 , 9 , 2) ; ---> If register @a1 is greater than the
register @a5, then output 9, otherwise output 2

+ Mathematical 'plus' (@a6 + 1);

&& Logical 'and' choose ((@a2 == 3) && (@a4 == 4) , 6 , 2) ; ---> If register @a2 is
equal to 3 and register @a4 is equal to 4, then output 6, otherwise
output 2

12

|| Logical 'or' choose ((@a3 == 3) || (@a3 == 4) , 8 , 5) ; ---> If register @a3 is
equal to 3 or register @a3 is equal to 4, then output 8, otherwise
output 5

shr Shifts byte right by X bits, inserting
zeroes to the left

shr ([Input 4] , 3) ; ---> Shifts the input from [Input 4] right by 3
bits, with 3 zeroes inserted to the left

& Returns a U32 'ANDed' with another
U32

[Input 7] & [Input 6] ; ---> Returns 1 if [Input 7] and [Input 6] have
the same value

